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Introduction 
 
Breast conserving therapy (BCT), which includes local excision and radiation treatment to the 
breast, has been the standard of care for early breast cancers (Stage 0-II), since five major 
prospective, randomized trials demonstrated that the long-term survival after BCT is equivalent to 
that of radical mastectomy for most patients when surgical margins are clear of residual disease1-

5. Of the 250,000 women annually diagnosed with breast cancer eligible for BCT, approximately 
165,000-180,000 have conservative surgery6.  Following breast conservation, the strongest risk 
factor for local recurrence and mortality is a positive resection margin (tumor cells on ink).  
Therefore, if a margin is positive or close, the patient is advised to undergo re-excision surgery to 
achieve clear margins7, 8. Margin status is currently evaluated post-operatively by microscopic 
evaluation of pathology in small, representative pieces of tissue. While sampled tissues are 
adequate for assessing tumor type, grade and receptor status, they are insufficient for evaluating 
important prognostic factors like disease extent and multi-focality.  Additionally, breast tissue is 
markedly heterogeneous, which makes distinguishing small foci of cancer within the spectrum of 
normal tissue challenging when using point-based probe measurements9-11. A broadband 
spectroscopy platform was developed to image thick tissue samples at a resolution sensitive to 
the diagnostic gold standard, pathology12. Tissue samples were imaged in a 1cm2 field of view 
across a static beam using a motorized stage, permitting wide-field optical characterization of 
diagnostic pathology.  The sampling spot size (100!m lateral resolution) confined the volume of 
tissue probed to within a few transport pathlengths so that multiple-scattering effects were 
minimized and simple empirical models parameterized the spectra. A k-Nearest Neighbor (k-NN) 
classifier was trained using parameters extracted from the localized scattering spectrum, 
automating diagnosis of benign and malignant breast pathologies in situ with a sensitivity and 
specificity of 91% and 77% respectively.  Performance of the classifier was validated in 67,000 
spectra from 29 excised breast tissues13. The work achieved in year one of this Department of 
Defense Pre-doctoral Traineeship Award effectively characterized the spectral response of breast 
pathologies and automated classification of the tissue’s spectral response according to a 
diagnosis.  Clinically feasible data acquisition speeds were attained through development of a 
dark-field in situ scanning-beam spectroscopy platform. Year two of the traineeship fellowship will 
assess the ability of the spectral imaging platform to provide immediate evaluation of involved 
surgical margins for the presence of residual cancer during breast-conserving surgery.  
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Body 
Task 1.  Assemble and parameterize an extensive databank of scatter spectra from fresh breast 
tissue across clinically relevant diagnostic categories. 

Materials and Methods 

1a. Scatter spectroscopy of fresh breast tissue 

Fresh breast tissue specimens were imaged in a custom-built micro-sampling reflectance spectral 
imaging system 14. This system employs a quasi-confocal illumination and detection (510-785nm) 
to constrain the overlapping illumination and detection spot sizes to within approximately one 
scattering distance in tissue (~100 !m in the visible).  A complete description of this imaging 
system can be found in a previous study 15. Sampling in this mesoscopic regime allows the use of 
simple empirical models to describe the light transport.  For the short pathlengths involved and for 
typical values of absorption and scattering in tissue, the measured spectral response is 
proportional to the reduced scattering coefficient, !s’. In regions where significant local absorption 
is encountered, a Beer’s law type attenuation factor is used to correct for the effects of absorption 
15-18.   

1b. Empirical model of spectral scattering response 

An empirical approximation to Mie theory was used to describe the measured reflectance 
spectrum, 

! 

R(") , from a volume-averaged region of tissue19.  Additionally, a Beer’s law 
attenuation factor corrected for the presence of significant local absorption by Hemoglobin (Eq. 2) 

! 

R(") = A"#b exp#$[ HbT ]{SO2 *% HbO2 (" )+(1#SO2 )*% Hb (" )}
  Eq. 2 

Parameters 

! 

A  and 

! 

b are scattering amplitude and scattering power respectively.  Both depend 
on the size and number density of scattering centers in the volume of interrogated tissue, thereby 
reflecting variations in breast tissue morphology 20-22. 

! 

" refers to the mean optical pathlength, 

! 

[HbT]is the total hemoglobin concentration, 

! 

SO2 is the oxygen saturation factor (ratio of 
oxygenated to total hemoglobin), and 

! 

"HbO2
and 

! 

"Hb refer to the molar extinction coefficients of 
these two chromophores respectively23.  Oxygenated and deoxygenated hemoglobin were the 
dominant tissue chromophores encountered in the measured waveband.  Measured reflectance 
spectra were fit to this model using a nonlinear least squares solver to obtain estimates of 
scattering amplitude and scattering power relative to Spectralon.  A measure of average 
scattering irradiance, 

! 

Iavg , was calculated by integrating the reflectance spectrum over a 
waveband that avoids the hemoglobin absorption peaks (620:785nm).  Scattering parameters 
were then microscopically correlated to morphological features identified by pathologist (Wendy 
Wells) on Hematoxylin and Eosin (H&E) stained sections of the tissue, cut in the exact same 
geometry as imaged in situ.  

1c.  Associate scattering parameters with diagnostic pathology 

All studies were completed based upon a protocol approved by the Committee for the Protection 
of Human Subjects, Institutional Review Board (IRB) at Dartmouth. Fresh breast tissue was 
obtained directly from the Department of Pathology at Dartmouth-Hitchcock Medical Center from 
patients who had given informed consent to allow this use of their tissue. Samples were procured 
during conservative surgery or breast reduction surgery, and were only provided if there was 
tissue in excess of that required to make a clinical diagnosis. Tissue samples were 1-2 cm2 with a 
thickness of ~3-5mm.  Samples were imaged within 12 hours of surgery, and in the case of delay, 
the tissue was stored in a 4⁰C refrigerator and hydrated with a phosphate buffer solution. 
Immediately following imaging, each sample was placed in 10% formalin and processed for 
histology (paraffin embedded, sectioned to 4µm, and stained with H&E).  A total of 35 tissue 
specimens were imaged; 6 were rejected from analysis due to low signal-to-noise and/or poor 
histological processing (both a consequence of highly fatty tissue). In the remaining 29 tissue 
samples, 48 regions of interest were identified by the pathologist and these are summarized in 
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Table 1. The pathologist identified seven tissue pathologies in the samples and these were 
classified more generally as not-malignant, malignant, or adipose.  
  

Tissue Type and Subtype # ROI # Spectra 

Total Not-Malignant 25 36979 

Normal Epithelium and Stroma 

Benign Epithelium and Stroma 

Inflammation 

21 

3 

1 

31226 

5220 

533 

Total Malignant 14 23220 
Ductal Carcinoma In Situ (DCIS) 

Invasive Ductal Carcinoma (IDC) 

Invasive Lobular Carcinoma (ILC) 

1 

12 

1 

194 

22547 

479 

Total Adipose 9 7021 

Adipose 9 7021 

Total ROI 48 67220 

Table 1 Distribution of the sample population according to tissue type and subtype. 

Figure 1(a) illustrates co-registration between the white light image, histology and images of 
scattering parameters for a tissue sample.  Figure 1(b-c) shows box plots of the scattering power 
and the logarithm of the wavelength-integrated irradiance with outliers removed (those greater 
than 2 standard deviations from the mean) for all tissue samples.  The scattering amplitude is not 
displayed because it follows the same trend as scattering power per diagnostic category and a 
correlation is observed between scattering power and logarithm of the scattering amplitude 
(Figure 1d).  
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Figure 1  (a) Co-registration between the digital photograph, histology and maps of scattering power, 
amplitude, and total-wavelength integrated intensity for a given tissue; (b-c) box plots of relative 
scatter power and log of the total-wavelength integrated intensity according to diagnosis (outliers > 
2 std not displayed); (d) the 3-dimensional features space assembled with scattering parameters and 
employed by the k-NN classifier. 

Histopathology reveals that the three macroscopic scattering centers found in breast tissue are 
epithelium, stroma and adipose. Immunohistochemistry shows that the percent distribution of 
these components varies with diagnosis and registration of scattering maps with pathology 
illustrate how spectral response changes as a function of diagnosis.  This suggests the percent 
distribution of stroma, epithelium and adipocytes in the effective illumination volume influences 
scattering response.  Standard immunohistochemistry techniques were used to assess the 
percent distribution of adipose, stroma and epithelium per sample.  Formalin fixed and paraffin 
embedded tissue sections were cut and mounted on OptiPlus™ Positive Charged Barrier slides 
(BioGenex, San Ramon CA) to test for Anti-Cytokeratins 8 and 18 (clone 5D3; BioGenex, San 
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Ramon CA.  Whole immunostained slides were digitally scanned and montaged using the 
Surveyor© Automated Specimen Scanning (Objective Imaging Ltd., Cambridge UK) automated 
stage control bundled software.  The epithelium to stroma ratio was quantified using Image-Pro 
Plus (Media Cybernetics, Bethesda MD) image analysis software.  The epithelial and stromal 
percentages were defined as the percent of CK5D3 positive or Hematoxylin counterstained 
tissue, thresholded in pseudo-color in the diagnostic regions of interest (ROI), as compared to the 
total area of the tissue, respectively.   Figure 2(a) shows fitted spectra sampled from normal, 
benign and malignant tissues respectively.  Figure 2(b) illustrates how epithelium, stroma and fat 
content vary between normal, benign and malignant samples based on this analysis. 

 
Figure 2 In (a) the fitted spectra sampled from normal, benign and malignant tissues respectively, 
are shown.  In (b) the distribution of stroma, epithelium and adipose are shown across the three 
diagnostic categories classified by immunohistochemistry, for all tissue samples are shown. 
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Task 2.  Develop an automated classification algorithm to provide real-time, un-biased 
interpretation of scatter images for improved evaluation of breast surgical margins.  

Materials and Methods 

2a.  k-Nearest Neighbor Classification 

The distribution of scattering parameters demonstrated subtle discrimination between tissue 
subtypes, but data was multi-parametric and overall classification was challenging. A k-Nearest 
Neighbor (k-NN) classifier was employed for ready discrimination between tissue pathologies. 
The k-NN classifier simultaneously interprets multiple scattering parameters for tissue 
characterization by assigning an unclassified vector (herein referred to as the query point) to the 
majority diagnosis of its k-nearest vectors found in the feature space. The feature space for three 
scatter-related parameters (scattering amplitude, scattering power, and total wavelength-
integrated intensity) is depicted in Figure 1(d), as well as a query point with unknown diagnosis.  
All tissue pixels were defined according to a vector in the 3-dimensional feature space and were 
assigned to the training set (populated feature space) or to the validation set (query points).  
Sample distributions between training and validation sets were made both randomly and 
according to a leave-one-out analysis per patient 24. All training pixels were associated with a 
known diagnosis according to the pathologist’s demarcation of ROIs. The diagnosis of each query 
point was also determined by the pathologist, but remained unknown to the classifier in order to 
evaluate its performance. 

Additional feature extraction from the actual data set has been shown to compensate for pixel-to-
pixel variations and to improve the overall performance of the classifier 25.  Therefore the first four 
statistical moments (mean, standard deviation, skewness and kurtosis) of each scattering 
parameter were estimated in a real 2-dimensional spatial window centered about each pixel of 
interest.  These local statistical parameters were concatenated to the actual scatter parameters, 
and parametric feature space was expanded from 3-dimensions to 15-dimensions.  The behavior 
of the classifier was then studied as a function of two independent variables:  the number of 
nearest neighbors k and the size of the spatial window used to compute local statistics. 

2b. Validation of the Classifier  

In order to optimize the independent variables associated with the classifier, a threefold cross-
validation technique was applied for discrimination between not-malignant, malignant and 
adipose samples and for discrimination between all pathology subtypes identified in Table 127, 28. 
All data was randomly divided into three non-overlapping sets, with an equal number of pixels per 
diagnostic category per set. Two of these sets were employed as a training set (used to populate 
feature space) and the other was employed as a validation set (query points) to compute the 
classification error. Error was taken to be the percentage of misclassified pixels in the validation 
set, where a misclassification means that the diagnosis assigned to a pixel by the automated 
classifier does not match the diagnosis provided by the pathologist. This procedure was repeated 
three times, for all possible permutations of training and testing sets and the reported 
classification error is the average of these three executions. This threefold cross-validation was 
repeated for a varying number of nearest neighbors, k, and a varying spatial window size for 
computation of local statistics.   

Additionally, leave-one-out analysis was performed per patient, where ROIs from one tissue 
sample populate the validation set and all other ROI pixels populate the feature space.  In this 
validation procedure, points are not equally distributed between diagnostic categories in either the 
training or testing sets. Images of the classification results were generated in H&E false color for 
each tissue sample, allowing one to evaluate whether the predicted diagnosis outside selected 
ROIs makes sense in context of the entire sample. A mode filter was applied in a sliding window 
(5x5 pixels) over the k-NN classified image to eliminate impulsive assignment noise. The error 
and efficacy of the classifier was summarized for all tissue samples.  Pixels corresponding to 
locations where reflectance spectra could not be reliably measured were tagged as masked 
pixels, and these were excluded from the training and validation sets during all cross-validation 
procedures. 
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Results 

Table 2 summarizes the classification efficacy and classification error observed when performing 
leave-one-out validation for all tissue samples.   

 Classification  
(Not-malignant, 
Malignant, Fat) 

Classification 
(All Pathologies) 

Classification Error   
Median 
Mean  
Standard Deviation 
Inter-quartile range 
[min max] 

8.75 
13.0 
13.7 
15.5 

[0 53.5] 

16.8 
25.3 
25.0 
25.5 

[2.15   95.3] 

Total Efficacy 
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0.86 0.86 0.98 0.74 0.85 1.00 0.86 0.99 0.99 0.98 
0.90 0.77 0.87 0.74 0.09 0.00 0.77 0.00 0.00 0.87 
0.82 0.90 0.99 0.74 0.91 1.00 0.90 1.00 1.00 0.99 
0.87 0.88 0.99 0.77 0.92 1.00 0.89 0.99 0.99 0.99 

Accuracy 

Sensitivity 

Specificity 

Negative Predictive Value 

Positive Predictive Value 0.86 0.81 0.95 0.71 0.08 0.00 0.79 0.00 0.00 0.95 

Table 2 Summary of the classification error and total efficacy of the k-NN classifier when 
discriminating between not-malignant, malignant and adipose tissue and when discriminating 
between all pathologies.  Reported measures based upon ability to discriminate given pathology 
from all other diagnostic categories evaluated. 

The median classification error is approximately 17% and 9% when discriminating between all 
pathologies and not-malignant, malignant, and adipose tissue respectively. This is quite close to 
our performance estimates. When classifying all pathologies, low sensitivity is observed for those 
classes under-represented in sample space (benign, DCIS, IDC, ILC, inflammation). In any case, 
the classifier has clinical application because normal epithelium and stroma, invasive ductal 
carcinoma and adipose are the most frequently encountered tissues during conservative breast 
surgery.  The classifier’s sensitivity to not-malignant, malignant and adipose pathologies is 0.90, 
0.77 and 0.87 respectively. Sensitivity is lower in malignant samples because its sample 
population is characterized by greater heterogeneity. While DCIS, IDC and ILC are all considered 
malignant, morphologically and biologically they are quite distinct. Specificity of the classifier for 
not-malignant, malignant and adipose pathologies is 0.82, 0.90 and 0.99 respectively.  Specificity 
is lowest in normal tissues because these are characterized by mixed fibro-glandular and adipose 
content. Epithelial proliferation in malignant tissues was observed to crowd out adipocytes in this 
study. In a reflectance geometry, scattering from adipocytes results in a very low (noisy) signal. 
The negative and positive predictive values for each diagnostic category are also reported. These 
refer to the number of patients with negative and positive results (respectively) who are correctly 
diagnosed.  For surgical margin applications, the surgeon is most interested in a high negative 
predictive value, ensuring his/her diagnosis of normal or malignant is an accurate one. The 
negative predictive values for not-malignant and malignant pathologies are 87% and 88% 
respectively. Although less essential, high positive predictive values prevent any unnecessary re-
excisions during surgery. 

The confusion matrices in Table 3 illustrate the distribution of misclassified pixels across 
diagnostic categories when performing leave-one-out analysis for two levels of diagnostic 
discrimination. This is important to consider because cost to the patient for misclassifying a 
normal pixel as benign is less than cost to the patient for misclassifying a malignant pixel as 
normal.  
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Table 3 (a) A confusion matrix, under leave-one-out validation, that represents trends in 
misclassification and accurate identification of benign and malignant pathologies. (b) A confusion 
matrix, under leave-one-out validation, that represents trends in misclassification and accurate 
identification of all pathologies identified by the pathologist.  The matrices list the percentage of 
pixels classified correctly along the diagonal (yellow), and incorrectly off the diagonal. Clear 
misclassifications are highlighted in gray.  

Figure 3 illustrates classification of 6 representative tissue samples. The first column contains a 
digital photograph of each tissue sample taken immediately after spectral imaging; this is the 
surgeon’s perspective. Fibro-glandular tissue is white, adipose is yellow-orange and higher 
concentrations of hemoglobin are red.  Histological sections were co-registered to the scattering 
and white light images and are displayed in column two. Hematoxylin has a deep blue-purple 
color and stains nucleic acids, which are primarily located in the cell nuclei. Eosin is pink and 
stains proteins nonspecifically; mainly the cytoplasm and stroma have varying degrees of pink 
staining. Fat is not preserved during histological processing, so this becomes empty space on the 
slide. Column 3 illustrates the ROIs identified by the pathologist and they are colored according to 
their true diagnostic category, while column 4 contains images of the automated diagnosis 
provided by the k-NN classifier. 

 
Figure 3 Classification of 6 representative tissue samples.  Each row corresponds to a different 
tissue sampel and the following four images are co-registered from left to right: (1) a white light 
image of the tissue, (2) H&E stained sections of the tissue, (3) true diagnosis of ROIs identified by 
the pathologist, and (4) classification results when discriminating between not-malignant, malignant 
and adipose tissues. 
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We recognize that the surgeon is most interested in a diagnosis of either benign or malignant; 
therefore the k-NN classifier was executed with this binary level of discrimination.  When 
separating benign and malignant pathologies, the sensitivity and specificity was 91% and 77% 
respectively; and the system achieved positive and negative predictive values of 88% and 81% 
respectively. 

Discussion 

This work demonstrates that morphological features pertinent to a tissue’s diagnosis may be 
ascertained from confocal detection of broadband reflectance, with a mesoscopic resolution that 
permits scanning of an entire margin for residual disease. The technical aspects and optimization 
of a k-NN classifier for automated diagnosis of pathologies is presented and validated in 29 
specimens of breast tissue. The classifier’s discriminating capabilities improved with the inclusion 
of local statistics, likely accounting for microscopic tissue heterogeneities. Initially, discrimination 
between all pathologies identified by WAW was attempted; however, inadequate sampling of 
uncommon pathologies rendered their classification less robust. Given the sample population, 
discrimination between not-malignant, malignant and adipose pathologies was most intuitive; 
particularly because these diagnostic categories correspond to the three macroscopic scattering 
centers in breast tissue (stroma, epithelium and adipocytes). Negative predict values of 87%, 
88% and 99% were achieved for not-malignant, malignant and adipose tissues respectively. In 
the same order, their positive predictive values were 86%, 81% and 95%. The classifier was most 
sensitive to not-malignant and adipose tissues because the malignant population was 
pathologically very diverse; including samples of invasive lobular carcinoma, invasive ductal 
carcinoma and ductal carcinoma in situ. Specificity was lowest in not-malignant samples because 
of their mixed fibro-glandular and adipose content. In the context of conservative surgery, the 
goal of treatment is to maximize removal of malignant tissues while minimizing damage to 
healthy, viable tissue.  When discriminating between benign and malignant tissues only, a 
sensitivity of 91% and a specificity of 77% was achieved. This sensitivity is significantly higher 
than those reported for frozen section analysis (which is not practical for lumpectomy margins 
because of the problems associated with freezing and cutting adipose tissues) and diffuse 
reflectance spectroscopy; although its specificity is lower 29-31. Even though overall efficacy of the 
classifier exceeds or is comparable to other intra-operative assessment techniques, integration of 
spectroscopy methods into the surgical suite will require a better negative predictive value, 
ensuring that the surgeon’s diagnosis of benign or malignant is an accurate one. Additionally, 
higher positive predictive values would prevent unnecessary tissue removal during surgery.  

Improvement of the classifier’s performance may fundamentally be achieved with greater 
sampling. As the number of data points in feature space increases, so does the accuracy of the 
classifier [Fukunaga, 1972 #2008]. Particularly, the classifier’s sensitivity to malignant pathologies 
has the most to gain and could be improved with equal representation of IDC, ILC and DCIS in 
feature space. As feature space expands, so will computational costs. Rather than calculating the 
distance between each query point and every point in feature space, a KD-tree may be employed 
to optimize the search algorithm 32. The classifier was trained with ROIs obviously belonging to a 
diagnosis - normal and malignant pathologies were identified by cellular features in fibro-
glandular regions and adipose ROIs were measured far from any fibro-glandular tissue. Perhaps 
the performance of the classifier would improve if an additional level of classification was 
employed, so that each diagnostic category was also labeled according to the subtypes, ‘fibro-
glandular’ or ‘fatty-fibro-glandular’. 

While mechanically scanning the sample was time intensive and therefore not suitable for clinical 
translation, a second-generation system has been developed that employs scanning-beam 
architecture to image tissue fields up to 1x1cm2 within 9-12 minutes. The high-throughput 
platform combines a broadband telecentric scanning design with dark-field illumination/detection 
optical path to allow efficient rejection of specular light while maintaining a consistent sampling 
geometry across the entire imaging field. System details can be found in the reference33; and this 
system is now used to image breast lumpectomy specimens.  To expand upon the variety of data 
collected, a supercontinuum white light source is used with the new scanning-beam spectral 
imager.  This source allows for broadband spectral imaging of breast pathology in a waveband 
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(400-750nm) that is sensitive to both tissue morphology and biochemical composition.  
Particularly, within this waveband one may determine the concentration of oxygenated and 
deoxygenated hemoglobin, beta carotene and blood break-down products in a tissue, while 
simultaneously extracting scattering features in a region with minimal absorption (beyond 
620nm). Addition of other optical parameters to the classifier is extremely simple, only involving 
an expansion of feature space (update the vector describing each pixel to N-dimensions, where N 
is the number of parameters). It would be particularly useful to generate a comprehensive dataset 
with parameters describing all possible endogenous light-tissue interactions (scattering, 
absorption, fluorescence), so that the most diagnostically discriminating and robust parameters 
could be identified and optimized during data collection. Note that beta-carotene is a member of 
the carotenoids and gives fat its highly pigmented, yellow color; we hope that its absorption 
spectra will improve classification of tissues with high adipose content.  

Finally, understanding the relationship between the optical and biological properties of a tissue 
will ultimately improve the diagnostic utility of optical techniques – permitting optimization of the 
measurement procedure and signal analysis for enhanced sensitivity to differentiating features.  
The technique remains to be tested intra-operatively; future clinical studies will reveal how the 
system may enhance existing surgery and pathologic procedures.  
  
 
 



11 

!
 

Laughney Annual Report 

Key Research Accomplishments 
• Validation and optimization of a k-Nearest Neighbor classifier to automatically 

detect breast tissue pathologies based upon direct sampling of the scattering 
spectral response. 

• Assessment of classifier performance in 67,000 spectra from 29 breast tissue 
specimens. When discriminating between benign and malignant pathologies, a 
sensitivity and specificity of 91% and 77% were achieved respectively.  

• Detailed sub-tissue analysis was performed to consider how diverse pathologies 
influence scattering response and overall classification efficacy. 

• Development of a dark-field spectral imaging system for rapid scanning of thick 
tissue specimens over a 1cm2 field of view.  
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Conference Publications 
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Conclusions 
In this contribution, we validate and optimize the ability of a k-NN classifier to automatically detect 
breast tissue pathologies based upon sampling of scattering spectral features.  The sampling 
volume was specifically chosen to be sensitive to architectural changes addressed by a 
pathologist during microscopic assessment of a surgical specimen, while also permitting its wide 
field scanning.  Performance of the classifier was assessed in 29 breast tissue specimens, and 
when discriminating between benign and malignant pathologies, a sensitivity and specificity of 
91% and 77% was achieved.  Further, detailed sub-tissue analysis was performed to consider 
how diverse pathologies influence scattering response and overall scattering efficacy.  The 
purpose of automating classification of scattering response from diagnostic pathologies is to 
assess involved surgical margins for cancer during primary surgery.  Identification of residual 
disease at the time of primary surgery offers clear value to the patient by decreasing re-excision 
rates and improving a patient’s survival advantage. If residual tumor is present at one or more 
margins, the surgeon, before closing, could be advised to remove more tissue immediately, rather 
than a later re-excision.  Optical characterization of tissue is expected to improve completeness 
of resection during breast conserving surgery because molecular interaction with light provides 
specific information about a tissue’s biochemistry and organelle morphology, which are altered by 
disease.   
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